首页 论坛背景 论坛机构 新闻中心 论坛活动 合作伙伴 项目合作 研究活动 教育培训 分 论 坛 会议视频 联系我们 English
 
    你的位置:  首页>> 研究活动 >> 蓝皮书、论坛文集、综合研究 >>详细内容
中国能源环境高峰论坛—海峡西岸峰会化学电源文摘
来源:              加入时间:  2011-02-12                   摄              文

锂资源与动力/储能电池的发展

杨军

上海交通大学化学化工学院

 

锂是世界上最轻的金属,也是电位最负的(-3.043V vs.SHE)和电化当量最大的金属(2.98A·h/g),因此以锂为电活性物的电池比能量极高。锂在工业中虽然用量不多,但作用很大,不仅在原子能、宇航及国防尖端工业使用,而且在冶金、电子、电池、玻璃陶瓷、石油化工、橡胶、钢铁、机械及医疗等众多领域中日益获得广泛的应用,被称誉为“工业味精”和二十一世纪的能源金属

由于锂的高化学活性,其在自然界中以无机盐类和化合物形式存在于海水、盐湖和一些特殊的矿物中。海水中的锂浓度很低,仅有少数资源能够以较低的成本提取出锂来,主要是富含锂的盐湖以及锂辉石和锂云母矿石。目前,全球已探明的锂资源基础储量折合成金属锂有约3千万吨,其中90%储存于盐湖卤水中。我国的锂资源丰富,约占全球的11.2%,其中约80%为盐湖卤水锂矿,主要分布于青海和西藏的盐湖中。国外公司主要从盐湖卤水生产碳酸锂,近年来我国虽然也在积极开发盐湖锂资源,但受资源、环境和技术条件等因素的制约,开发进展缓慢,目前仍以固体矿石为主。

进入21世纪,化石能源将逐渐枯竭,清洁能源时代来临,需大力发展可再生能、核能等新能源技术,二次电池将大规模用于现代通信、储能和电动车技术,高能密度二次锂电池已成为一种重要选择。以现有的石墨/磷酸铁锂动力电池计算,每生产100万辆纯电动车至少需要 1.4万吨碳酸锂,而我国在2008年的碳酸锂等价物总产量也只有约2万吨(占全球的22%),主要用于其它行业。2010年全球传统行业消耗11万吨碳酸锂,并以每年约5%的速度增长。如果大规模推广锂电池纯电动车和储能电源,需成倍提高碳酸锂产量,这将极大推动锂产业的发展。虽然全球锂资源充足,但我国近年的锂产能主要来自进口澳洲矿石,盐湖提锂仍需要在技术、环保和能耗方面有更大突破才能满足锂动力和储能电池大规模应用的需求,而且盐湖提锂的成本还直接与盐湖中其它资源的有效利用有关。从锂资源有效利用的角度看,鉴于锂电池高能量密度的特点,应优先满足包括电动车在内的移动工具和装置的需求,而在储能电池方面也可以考虑其它类型的电池体系(如液流电池、改良型铅酸电池等);同时,开发和大力推广二次锂电池还要关注单位Wh的需锂量和电池循环寿命,加快开发锂电池回收和资源再利用技术。表1给出了现有100Ah锂离子电池所需的Li2CO3量比较。需要指出的是,虽然三元系正极电池每Wh的需锂量最高,但其实际比能量也最大。

 

1. 负极为石墨的100Ah锂离子电池所需Li2CO3

Table 1Required Li2CO3 amounts for 100Ah Li-ion batteries using graphite anode

正极材料

电压

(V)

能量

(Wh)

正极材料的锂利用率

所需锂摩尔数

理论碳酸锂量

(g)

实际碳酸锂量

(g)

Wh需碳酸锂量

(g/Wh)

LiFePO4

3.2

320

80%

4.7

173

186

0.582

LiMn2O4

3.8

380

68%

5.53

204

219

0.577

Li(NiMnCo)1/3O2

3.6

360

54%

6.91

273

293

0.814

 

关键词:锂资源;锂应用;锂离子电池;电动车;储能电源。

 

致谢:国家973项目(2007CB209700)天齐锂业有限公司和新能源科技有限公司(ATL)提供资料


 

新型锂离子电池电极材料研发进展

郑建明b,吕东平b,陈慧鑫b,龚正良a, 杨勇a, b*

a厦门大学能源研究院

b固体表面物理化学国家重点实验室,厦门大学化学化工学院

 

锂离子电池正朝着高能量密度、高功率密度及其大型化方向发展,而具有高容量的正负极材料的发展令人关注,因为它们的发展状态决定了下一代锂离子电池的发展进程。本报告结合国际上的发展动态及实验室的一些研究进展,主要就几种新型锂离子电池正极材料如富锂层状正极材料( Li[Li0.2Mn0.54Ni0.13Co0.13]O2),硅酸盐正极材料以及纳米硅材料的研发进展进行总结和评述[1-3]

 

关键词:锂离子电池;新型电极材料;富锂正极材料

 

致谢:国家自然科学基金项目 (20873115)及国家973项目(2007CB209702

 

参考文献:

1.    J. M. Zheng, Z. R. Zhang, X. B. Wu, Z. X. Dong, Z. Zhu, Y. Yang ; J Electrochem.Soc.;2008, 155(10), A775-782

2.    D. P. Lv, et al in preparation

3.    H. X. Chen, Y. Xiao, L. Wang, Y. Yang, J Power Sources, in press

 

Advance in R&D Development of New Electrode Materials for Li-ion Batteries

J. M. Zheng b, D. P. Lv b, H. X. Chen b, Z. L. Gong a, Y. Yang a, b *

a School of Energy Research, Xiamen University

b State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry

 

    Recent advances in the R&D development of new electrode materials for Li-ion batteries have been summarized and reviewed in this paper.


 

电动汽车和储能用锂电的挑战与创新

曾毓群

总裁兼首席执行官

东莞新能源科技有限公司

 

随着对于出行便利性以及生活质量的要求提高,人们对于能源的需求加剧。现有以化石能源为主的能源消费结构引发一系列问题,包括化石能源的枯竭和价格上涨、环境污染、室温效应、国家能源安全和经济的不可持续发展。当前解决目前能源与环境问题的途径主要有两个:一是发展智能电网,增加风能和太阳能等新能源的比重;二是发展电动汽车。无论对于智能电网还是对于新能源汽车,发展高性能和低成本的电能存储技术都十分关键。锂电由于其高能量密度和功率密度等优点成为应用于电动汽车和电网储能的最有前途的储能技术之一。本报告将首先回顾锂电材料发展史、锂电在电动汽车和电网储能应用方面取得的进展,然后在此基础上讨论当前锂电面临的挑战和期待的创新。最后,本报告将从一个锂电制造商的角度讨论政府和科研院所在引领创新和解决锂电面临的挑战的过程中的重要角色和作用。

 

关键词:锂离子电池;电动汽车;储能;创新;挑战。

 

LIB Challenges and Innovation for EV and Energy Storage

 

Ro-Bin Zeng

President & CEO

Dongguan Amperex Technology Limited

 

Energy demand increases significantly as people require a higher mobility and living standard. Current fossil energy dominated energy consumption structure leads to a series of serious problems, including fossil energy depletion and price rise, environment contamination, green house effect, national energy stability and unsustainable economic growth. Ways to solve these energy and environmental problems are: 1) to apply smart grid and generate electricity by renewable energy like wind and solar energy; 2) to apply electric vehicle. Development of electric energy storage technology with high performance and low cost is the key to successful implementation of both grid energy storage and electric vehicle. Due to its advantage in energy and power density, lithium ion battery (LIB) is considered to be one of the most promising energy storage solutions to both applications. This report reviews development history of LIB materials and current development progress of LIB for EV and energy storage. LIB is also facing a few challenges for LIB for EV and energy storage. This report will discuss what innovations are expected to solve these challenges. The last but not the least, this report will discuss, from a LIB manufacturer’s perspective, the critical roles of government and research institutes in the process of leading innovations and solving LIB challenges for EV and energy storage.


 

Synthesis of Doped Li2FeSiO4 Composites and their Electrochemical Performance

 

Meilong Chen, Qingsong Tong*, Xinkang Huang, Meijuan Chang, Renqian Wu, Xiuhua Li

Corresponding Author Qingsong Tong

College of Chemistry and Materials Science, Fujian Normal University

 

Micron-sized Li2.05FeSiO4Fx/C (x = 0, 0.01, 0.02, 0.03 and 0.04) and Li2.05Fe1-yZrySiO4F0.02/C (y = 0.025, 0.0375, 0.05) composites were prepared using hydrolysis-mechanic activation method. The as-prepared composites were characterized by using X-ray diffraction, charge–discharge cycling, cyclic voltammograms, field emission scanning electron microscopy, X-ray photoelectron spectroscopy experiment, UV-vis diffuse reflectance spectra and other techniques. Among these composites, the Li2.05Fe1-yZrySiO4F0.02/C were indexed to an monoclinic structure with the space group of P21/n followed with SiO2 impurity phase. The Li2.05Fe0.95Zr0.025SiO4F0.02/C composite prepared in the temperature range of 400 ◦C – 600 ◦C exhibits the best electrochemical performance in the as-prepared composites while charge-discharge at different rates not only at room temperature, but also at 55 ◦C. Li2.05Fe0.95Zr0.025SiO4F0.02/C composite exhibits the 1st cycle capacity of 160.3 mAh g-1 (0.3 C rate ) and 111.5 mAh·g-1 (1 C rate ) at 55 ◦C, the capacity retention of 30 cycles is 86.5%% (1 C rate ). During cycling, the electrochemical polarization of Li2.05Fe0.95Zr0.025SiO4F0.02/C is weaker than those of Li2.05FeSiO4/C. The F-Zr co-doping can improve the electrochemical performance of lithium iron silicate.

 

Acknowledgements

Financial support from the National Natural Science Foundation of China (No. 20973038), Key Project of Science and Technology Department of Fujian Province (No. 20973038) and the Fujian Provincial Development and Reform Commission (Grant Ref. Mingfagai Gaoji [2008]794 Hao) is gratefully acknowledged.


 

混合超级电容研究进展

高立军

苏州大学能源学院

 

超级电容作为储能装置近来备受关注[1]。除能量密度之外,可以说超级电容在各项性能指标均优于电池。超级电容可以高倍率充放电,其功率密度一般>1kW/kg;超级电容的循环寿命可以达到几万次甚至上百万次,(而磷酸铁锂电池约两千次);超级电容的使用温度范围比较宽,在-40 - +65℃之间。重要的是在安全性方面,超级电容充放电过程为物理过程,由于没有发生物相变化的化学反应,在泛用的情况下也会比较安全。目前商业的碳/碳超级电容的能量密度约5 Wh/kg,比电池小10-30倍。因此提高超级电容的能量密度成为研究焦点,目标是提高储电能力同时保持功率优势和循环特性。其中一种比较实际可行的方法是构建混合超级电容,即采用一半电池电极材料另一半超级电容电极材料组成的体系[2],如锂离子电容,Li4Ti5O12/ACPbO2/AC混合超级电容体系。锂离子电容采用锂电池石墨负极材料;Li4Ti5O12/AC中的钛酸锂属于结构稳定的高倍率锂电池负极材料;而PbO2/AC体系采用活性碳取代铅酸电池中的铅负极;上述组合构成介于电池和电容之间的,具有独特性能的混合储能体系。混合超级电容的研究具有重要的实际应用价值。

 

关键词:超级电容;混合超级电容;锂离子电容;钛酸锂;活性碳

 

致谢:国家自然科学基金项目 (20663005)

参考文献:

[1]. B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum, New York, 1999.

[2]. A.F. Burke, Electrochim. Acta 53 (2007) 1083-1091.

 

 

Progress of Hybrid Supercapacitor Research

 

Li-Jun Gao

School of Energy, Soochow University

 

Supercapacitor is considered an advantageous energy storage device over batteries, due to its intrinsic properties in high power density, long cycle life, wide temperature range and safety. However, it is critical to improve energy density for supercpacitors. One of the practical approaches is to build a hybrid capacitor, i.e. using a battery electrode material and a capacitor electrode material to form a hybrid system. In this report, Li-ion capacitor, Li4Ti5O12/AC and PbO2/AC hybrid systems will be introduced. In Li-ion capacitor, the graphite negative electrode of Li-ion battery is used; in Li4Ti5O12/AC system, the stable Li4Ti5O12 negative electrode material with high rate capability is adopted; and in PbO2/AC system, the Pb negative electrode typically used in lead acid battery is replaced by the activated carbon electrode. These combinations result in hybrid energy storage devices with unique properties that differ from supercapacitors and batteries. The hybrid systems can find niche applications in many areas.


 

应用于新型领域的高性能锂离子电池

张贵萍,黄子欣,吴友星,李振,庄云南,赖志鑫,陈健行,邓刚,黄新华,林清强,李锦运,吴永文

优科能源(漳州)有限公司

 

现有的已商业化并且大量生产的锂离子电池,例如应用在手机、笔记本电脑、MP3MP4等消费电子产品上,能较好的满足电子产品的电性能要求,技术上也很成熟,由于具有能量密度高的优势,随着时代的发展,轻,薄,高能量密度等特性在一些尚未使用锂离子电池的领域或者已有用镍镉镍氢等电池的领域(我们称之为锂离子电池新型领域)也受到极大的欢迎和重视,但是现有的已商业化的锂离子电池技术却不能满足新型领域的产品要求,例如在航空领域,在高空会有-40°C的低温并且要求较高的工作电流和高安全性,例如将来预期有巨大需求的新型的带指纹识别的信用卡,要求电池厚度在0.4毫米以下,并且能承受制卡时的高压力和高温(140°C)。又比如在欧洲较北部的地区,电动摩托车大受欢迎,但是很难在-20°C既能充电又能高效率的工作且长循环寿命。再比如在防弹服或作战服,要求在低温下工作,又能承受子弹穿透等等。

本文介绍了几种锂离子电池,具有一些新的高性能,如低温下大电流工作,高能量密度,单体电池容量大且高安全性等。一些材料(如高分子树脂,十二氟硼酸锂, 双(三氟甲磺酰亚胺)锂),以及独特的电解质配方被开发应用在这些电池中,使这些电池获得了高性能并且在航空,防弹服,初级互联网,有源卡,电动车等领域获得开拓性的应用.

 

关键词:锂离子电池,航空,电解质,十二氟硼酸锂, 双(三氟甲磺酰亚胺)锂

 

New Applications for Original High Performance Lithium Ion Batteries

 

Gui-Ping ZhangZi-Xin HuangYou-Xing WuZhen LiYun-Nan ZhuangZhi-Xin LaiGang DengJian-Hang ChenXin-Hua HuangQing-Qiang Lin, Yong-Wen Wu

Yoku Energy (Zhang Zhou) Co.Ltd

 

Several types of new and original lithium ion batteries have been researched and developed by Yoku Energy Co.,Ltd. They have been applied to aircrafts, bullet-proof vest s and battle clothing, internet uses, powered cards, electric cars etc. Compared with just consumer battery products (mobile phone, portable computer, MP4 etc), Yoku lithium ion batteries possess the higher performance in terms of a high rate in discharging in low temperature (<-40°C), a high energy density, excellent safety, and a large capacity etc. Yoku lithium ion batteries utilizes new materials (e.g. LiB2F12, Lithium bis(trifluoromethanesulfonimide)polymer) and unique electrolyte formula in order to achieve the highest performance and commercialization.

Key words: Lithium ion battery, Aviation, Aircrafts, Electrolyte, LiB2F12, Lithium bis(trifluoromethanesulfonimide)


 

锂离子电池正极材料LiCoMnO4的制备及电化学性能

黄行康a,*, 李秀华a,童庆松a,林忞a,杨勇b*

a福建师范大学化学与材料学院

b固体表面物理化学国家重点实验室,厦门大学化学化工学院

 

Fig. 1 Charge/discharge curves of LiCoMnO4 during the initial five cycles.

5 V 尖晶石LiMyMn2-yO4 (M=Ni, Co, Cu, Cr,) 用作锂离子正极材料,具有很高的电压平台(约5V),近年来吸引了众多的研究。[1,2]在这些5 V尖晶石中,LiNi0.5MnO4(电压平台约4.7V)被研究最为广泛,而LiCoMnO4仅有少量报道。这里我们初步报道关于一种LiCoMnO4材料的制备及电化学性能。图1示出了800°C下制备的LiCoMnO4在前5个充放电循环的曲线。该LiCoMnO45V区有两个平台,分别为4.95.1V。其放电容量为98mAh g1。将此LiCoMnO4正极材料与Li4Ti5O12负极材料组装成全电池,以170 mA g-1的电流充放电,得到的电压平台约为3.2V,容量约为130 mAh g-1

 

关键词:5V尖晶石;LiCoMnO4Li4Ti5O12;锂离子电池

 

致谢:福建省教育厅A类科技项目(JA100072,973项目(2007CB209702),国家自然科学基金(2087311520021002

参考文献:

[1] R Santhanam, B Rambabu. J Power Sources, 2010, 195(17), 5442-5451.

[2] X K Huang, Q S Zhang, J L Gan, H T Chang, Y Yang. J Electrochem Soc, 2011, 158(2), A139-A145.

 

Preparation and Electrochemical Performance of a LiCoMnO4 Cathode Material for Lithium-ion Batteries

 

Xing-kang Huanga *, Xiu-hua Lia, Qing-song Tonga, Min Lina, and Yong Yangb *

a College of Chemistry and materials science, Fujian Normal University

b State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry

5 V spinel LiMyMn2-yO4 (M=Ni, Co, Cu, Cr, etc.), as cathode materials for lithium-ion batteries have very high working plateaus (ca. 5V), and have attracted a lot interest in the past few years. Among these 5 V spinel materials, the LiNi0.5Mn1.5O4 (ca.4.7 V) was investigated intensively; by contrast, there are only several reports on LiCoMnO4 materials. Here we present the preliminary results of our preparation of a LiCoMnO4 and its electrochemical performance. Fig. 1 shows the charge/discharge curves of the LiCoMnO4 synthesized at 800°C during the initial five cycles. The LiCoMnO4 exhibited two plateaus at 4.9 and 5.1 V, and delivered a capacity of ca. 98 mAh g-1. The as-prepared LiCoMnO4 was assembled to be a full cell using Li4Ti5O12 as an anode material, showing a voltage plateau of ca. 3.2 V and a discharge capacity of 130 mAh g-1 at 170 mA g-1.


 

锂离子电池界面过程的谱学研究

李君涛, 方俊川,苏航,孙世刚

能源研究院,固体表面物理化学国家重点实验室,厦门大学化学系

 

锂离子电池的界面反应包括锂离子的嵌、电解液的分解、固体电解质界面膜的形成等过程。这些界面反应对电池的循环性能、寿命、化学和物理稳定性、以及不可逆容量有重要的影响,是锂离子电池的研究热点之一。目前,随着各种新型电极材料的开发以及对原有电极材料的改性、修饰和惨杂,使得研究这些新型电极材料的界面反应变得十分必要。此外关于研究锂离子电池的界面反应也有助于发展和建立相关的非水电解质理论和模型。通过显微傅里叶变换红外光谱(FTIRS),电化学石英晶体微天平(EQCM)X射线光电子能谱(XPS)和飞行时间二次离子质谱(ToF-SIMS)从分子水平微观层次认识锂离子电池的界面过程[1-3]。通过FTIRSXPS 这两种灵敏的表面分析技术,可以非原位地检测电化学循环后锡基负极的变化和指认固体电解质膜的化学组份。原位FTIRS主要用于锡基负极电化学循环过程中电解液的分解、SEI膜形的成和Li离子的嵌脱等过程。EQCM通过记录单位电荷转移引起电极上纳克级的质量变化,原位地跟踪充放时锡基负极发生的不同的电化学过程。ToF-SISM通过记录不同剥离时间的碎片离子强度,对嵌脱锂后的材料进行深度组份分布分析,从而研究锡基负极上Li离子在固相材料的嵌脱、扩散过程。

 

关键词:锡合金负极;FTIRSXPSToF-SIMSEQCM

 

致谢:国家自然科学基金项目 (210031022083300521021002)国家973项目 (2009CB220102)

参考文献:

[1] J T Li, S R Chen, F S Ke, G Z Wei, L Huang, S G Sun, J. Electroanal. Chem., 2010: 171-176

[2] J T Li, J Swiatowska, A Seyeux, S Zanna, L Klein, S G Sun, P Marcus, J. Power Scours, 2010, 195: 8251-8257

[3] J T Li, S R Chen, X Y Fan, L Huang, S G Sun, Langmuir, 2007, 23, 13174-13180

 

The Investigation of Electrode Processes of Sn Alloy Anodes

 

Jun–Tao Li, Ling Huang, Hang Su, Shi–Gang Sun

School of Energy Research, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, Xiamen University

 

The process occurring in nonaqueous interfaces and inside electrode include insertion/extraction, solvation/desolvation, decomposition of electrolyte and formation of solid electrolyte interphase (SEI) layer. These electrode processes are the key issue relating to the cycling ability, life time, stability and reversible capacity of a lithium ion battery (LIB). Consequently, comprehensive understanding of electrode processes is crucial to optimize materials, and is therefore perquisite for the development of advanced LIB. We summarize our recent efforts on investigating these electrode processes on Sn alloy anodes by FTIRS, EQCM, glove-box connected XPS and ToF-SIMS.


 

链状结构的Co3O4空心球作为锂离子电池负极材料的研究

徐桂良a, 李君涛b,孙世刚a, b

a固体表面物理化学国家重点实验室,厦门大学化学化工学院

b厦门厦门大学能源研究院

 

随着全球经济的发展和科技的进步,人们对可移动能源的需求日益增加,特别是纯电动交通工具(EV)和混合动力汽车(HEV)的呼声,随着石油及环境危机的加剧而不断提高。当前商业化锂离子电池采用的负极材料是石墨,它的理论容量仅为372 mAh g-1,很难满足高能量和高功率密度锂离子电池的要求。因此,开发新型的高能量密度和高功率密度的负极材料显得尤为重要。

自从2000Tarascon等报道了过渡金属氧化物可作为锂离子电池的负极材料后,相关的研究报道表明,基于一种异于嵌脱机制的转化反应机理,过渡金属氧化物的理论容量高出石墨近2倍,其中Co3O4的理论容量为890 mAh g-1.然而由于充放电过程的体积效应,Co3O4的循环性能很差,因而限制了它的应用。目前解决的方法主要有纳米化和碳包覆等。本论文通过湿化学法制备链状结构的Co3O4空心球,该材料以100 mA g-1的电流密度充放电,首次放电容量达到1086.9 mAh g-1,首次充电容量达到742.3 mAh g-1140圈后保持450.7 mAh g-1的可逆容量,显示出很好的循环性能,结果表明该材料可作为下一代锂离子电池的负极材料。

 

关键词:锂离子电池;负极;Co3O4;过渡金属氧化物

 

致谢:国家自然科学基金项目 (210031022083300521021002)国家973项目 (2009CB220102)

 

 

 

Co3O4空心球的HR-TEM

Co3O4空心球的SEM

Co3O4空心球的TEM

 


 

 

 

 

Co3O4空心球的循环性能图

Co3O4空心球的CV

Co3O4空心球的充放电电压-容量图

 

 

 


 

Chains of Co3O4 hollow spheres as Anode for Lithium-ion Batteries

 

Gui-Liang Xu a, Jun-Tao Li b, Shi-Gang Sun a, b

a State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, Xiamen

b School of Energy Research, Xiamen University


 

锡镍磷合金棒状阵列作为高比能量的锂离子电池负极材料

王云晓a, 黄令a*,常玉清a,柯福生a,李君涛b 孙世刚a ,b*

a固体表面物理化学国家重点实验室,厦门大学化学化工学院

b厦门大学能源研究院

 

 

“活性/非活性”的金属间化合物作为锂离子电池负极材料,可使合金材料具有较高的理论容量和良好的循环性能从而受到广泛的关注。锡(994 mAh/g)和磷(2563 mAh/g)由于具有高的理论容量成为近些年研究的热点。

本文采用电沉积的方法,以铜纳米棒阵列为集流体[1],制备出了具有棒状结构的Sn-Ni-P三元合金电极。通过X-射线衍射(XRD),扫描电镜(SEM)和能谱(EDS)对该材料的合金组成和形貌进行分析。并对该电极进行了电化学性能测试,其首次放电放电(嵌锂)容量为785.0 mAh/g,充电(脱锂)容量为567.8mAh/g,经过100周循环后容量仍能保持在600mAh/g左右。充放电测试结果显示出该合金具有较高的容量﹑优良的循环性能和优秀的倍率性能。

 

关键词:锂离子电池;负极;Sn-Ni-P合金;纳米铜棒集流体。

 

致谢:国家自然科学基金项目(210031022077310220833005)、国家973 项目(2009CB220102)

参考文献:

[1] Jusef Hassoun, Stefania Panero,Patrice Simon,Pierre Louis Taberna,and Bruno Scrosati*  Adv.Mater. 2007, 19,1632-1635

 

Fabrication and electrochemical properties of the Sn-Ni-P alloy rods arry electrode for lithium-ion batteries

 

Yun-Xiao Wang a, Ling Huang a*, Yu-Qing Chang a, Fu-Sheng Ke a, Jun-Tao Li b, Shi-Gang Sun a, b*

 a State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry

bSchool of Energy Research, Xiamen University

 

 

A new ternary Sn-Ni-P alloy rods array electrode for lithium-ion batteries is synthesized by facile electrodeposition with a Cu nanorods arrays structured foil as current collector. The Cu nanorods arrays foil is fabricated by heat treatment and electrochemical reduction of Cu(OH)2 nanorods film, which is grown directly on Cu substrates through a oxidation method. The Sn-Ni-P alloy rods array electrode is mainly composed of pure Sn, Ni3Sn4 and Ni-P phases. The electrochemical experimental results illustrate that the Sn-Ni-P alloy rods array electrode has high reversible capacity, excellent coulombic efficiency and outstanding rate capacity.

 

 

 

论坛秘书处/中国能源环境百千万万/新百千万万活动专家指导小组办公室/中国能源环境研究中心   论坛网站www.ceeschina.org  微信号CEESCEES

电话(Tel ):010- 68539833,64492361 E-mail: ceesint@163.com; ceeschina@139.com

地址:北京朝阳区惠新东街10号对外经济贸易大学科研楼10层
群友通讯录https://v2.qun.hk/#!/phonebook/1f962072cc19/poster   论坛微博http://weibo.com/u/3917316496


坛发起单位 :(按时序)国家信息中心,国家发展改革委中国国际经济交流中心、城市和小城镇改革发展中心,厦门大学,对外经济贸易大学,经济日报社中国经济趋势研究院

中国能源环境“百千万万”/“新百千万万”活动共同启动单位: 国家发展改革委环资司、国家能源局新能源和可再生能源司///

对外经济贸易大学、国家信息中心//国家节能中心、经济日报中国经济趋势研究院

承办/技术支持: 对外经济贸易大学中国能源环境研究中心、全球智库能源环境咨询(北京)中心

工信部备案号京ICP备12005894号 京公网安备 11010502030108号

蓝皮书中国能源环境高峰论坛蓝皮书/中国经济出版社――第四部《绿色生态促进》;第三部《绿色发展革命》第二部《绿色发展消霾论》;第一部《绿色发展全球梦

绿皮书 中国能源环境高峰论坛绿皮书/经济日报出版社――《探索全球智库之路》